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Abstract

Chemical shifts contain substantial information about protein local conformations. We present a method to
assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on
the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. Themethod uses a
scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to
have a particular conformation. The Ramachandran map is partitioned into representative regions at two
levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different
secondary structure regions on the map. At the higher resolution level, the a and b regions are further divided
into subregions. Predictions are attempted at both levels of resolution.We compared ourmethodwithTALOS
using the original TALOS database, and obtained comparable results. Although TALOS may produce the
best results with currently available databases which are much enlarged, the Bayesian-probability-based
approach can provide a quantitative measure for the reliability of predictions.

Abbreviations: CSI – chemical shift index; ROC curve – receiver operating characteristic curve.

Introduction

Chemical shifts are among the most important
parameters measured by NMR spectroscopy. They
are sensitive to local environments and can be used
as indicators of local conformations. As an
important example, it has been known that the
chemical shifts of protein backbone atoms corre-
late strongly with the backbone dihedral angles or
secondary structure types (Spera and Bax, 1991;
Wishart et al., 1991; Luginbuhl et al., 1995). This
correlation has been exploited in two mutually
opposite directions.

In one direction, many efforts have been made
to predict chemical shifts from structures, includ-
ing the developments of statistical approaches
deriving empirical chemical shift hypersurfaces
from databases of observed chemical shifts
(Le and Oldfield, 1994; Wishart and Nip, 1998;
Iwadate et al., 1999), and of non-statistical
approaches using classical physics or empirical
equations to compute chemical shifts (Osapay and
Case, 1991, 1994; Neal et al., 2003). First principle
or quantum mechanical approaches have also been
proposed for the same purpose (Ando et al., 1998;
Dedios et al., 1993; Xu and Case, 2001, 2002).
Recently, artificial neural networks have been used
for this goal as well (Meiler, 2003). Among the
various approaches, those based on statistics are
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usually more rapid, while those based on quantum
mechanics can deal with various experimental
conditions.

In the other direction, several algorithms have
been developed to predict structures (mainly pro-
tein backbone dihedral angles and secondary
structures) from chemical shifts. The chemical shift
index (CSI) approach has been widely used to
derive information about secondary structures
(Wishart et al., 1992). The first CSI scheme made
use of the chemical shifts of 1Ha to assign protein
secondary structures. It was soon extended to
include chemical shifts of atoms of other types
(Le and Oldfield, 1994; Wishart and Sykes, 1994).
The information derived from the chemical shifts
of atoms of multiple types is in general more
accurate and more reliable than that derived from
chemical shifts of atoms of a single type. Wang
and Jardetzky presented an approach to identify
secondary structures by comparing the joint
probabilities of a set of known chemical shifts to
be associated with different secondary structure
types (Wang and Jardetzky, 2002). There is also a
neural network method introduced by Hung and
Samudrala (Hung and Samudrala, 2003). These
approaches make qualitative predictions of sec-
ondary structure types without providing further
quantitative information. Beger and Bolton
described an empirical hypersurface approach to
determine protein backbone dihedral angles (Beger
and Bolton, 1997). Cornilescu et al. presented the
TALOS method, which extracts restraints on
backbone dihedral angles from given sequence and
secondary chemical shift data (Cornilescu et al.,
1999). More specifically, TALOS searches a pre-
defined database for 10 nearest-neighbor tripep-
tide segments of a query tripeptide segment, using
a similarity measure which is a weighted sum of
various sequence and chemical shift similarity
terms. Predictions are attempted if the near-
est neighbors consistently have similar dihedral
angles. While the nearest-neighbor approach can
provide useful constraints for structural refine-
ments, the weighted sum form of the similarity
measure is somehow artificial. One deficiency
of the nearest-neighbor method is its sensitivity
to the choice of database. With the original
TALOS database which is relatively small, we
found that a small number of abnormal members
in the database may have large influences on the
results.

Here we define a Bayesian-probability-based
score function to assign the backbone dihedral
angle of a central residue based on the same data
as used by TALOS, i.e., the sequence and chemical
shifts of a tripeptide segment. We estimated the
parameters using database statistics. The proba-
bility-based approach provides a measure on the
reliability of assignments, so that in structure
refinement erroneous restraints could be avoided
by enforcing only those restraints with higher
reliability. In the following sections we will first
describe the method. Then we will analyze the
performance of the method for prediction goals at
two different resolution levels. The lower resolu-
tion prediction goal is comparable to the assign-
ment of single residue backbone conformations
into different secondary structure regions, and the
higher resolution predictions assign residues into
subregions resulted from further dividing each of
the a and b regions on the Ramachandran map.
The results are compared with those obtained
using the TALOS method. The differences between
the methods will be discussed.

Materials and methods

A Bayesian-probability-based scoring function

The secondary chemical shift of an atom has been
defined as the deviation of its chemical shift from
the averaged chemical shift of atoms of the same
type in random coil structures (Spera and Bax,
1991). We consider a tripeptide segment with a
given amino acid sequence S and a set of backbone
atom secondary chemical shifts r (including
chemical shifts of 13Ca, 13Cb, 13C, 15N and 1Ha).
The Bayesian posterior probability for the back-
bone dihedral angles of the central residue to be in
region D, P(D|S, r), can be formulated as

PðDjS;rÞ ¼ Pðr;SjDÞPðDÞ
P

D0
Pðr;SjD0ÞPðD0Þ

¼ PðrjDÞPðSjDÞPðDÞ
P

D0
PðrjD0ÞPðSjD0ÞPðD0Þ :

ð1Þ

Here we have assumed the conditional indepen-
dence between the secondary chemical shifts and
the sequence given the backbone conformation of
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the central residue. This is reasonable because
during the conversion of chemical shifts into sec-
ondary chemical shifts, the corrections for influ-
ence of amino acid types and neighboring residue
effects have already been included (in the same
way as TALOS (Cornilescu et al., 1999)). This
assumption is also necessary as we do not have
enough data to obtain a reliable joint distribution
of the chemical shifts and the sequences condi-
tioned on D. Now the ratio between the proba-
bilities of two different conformations, D1 and D2,
given S and r can be expressed as

PðD1jS;rÞ
PðD2jS;rÞ

¼PðrjD1ÞPðSjD1ÞPðD1Þ
PðrjD2ÞPðSjD2ÞPðD2Þ

¼PðrjD1Þ
PðrjD2Þ

PðS;D1Þ
PðS;D2Þ

¼PðrjD1Þ
PðrjD1Þ

PðD1jSÞ
PðD2jSÞ

;

ð2Þ

i.e.,

PðDjS;rÞ / PðrjDÞPðDjSÞ: ð3Þ

We assume that P(r|D) follows a multi-
dimensional Gaussian distribution, that is,

PðrjDÞ ¼ 1

ð2pÞ15=2 Bj j1=2

exp � 1

2
ðr� hriÞ0B�1ðr� hriÞ

� �

;

ð4Þ

where B is the covariance matrix of secondary
chemical shifts, and define the following scoring
function which is essentially the negative logarithm
of the Bayesian probability defined by Equation 3,

MðD;S;rÞ ¼ � 2 lnðPðrjDÞPðDjSÞÞ � 15 ln 2p

¼ ln Bj j þ ðr� hriÞ0B�1ðr� hriÞ
� 2 lnPðDjSÞ ð5Þ

We can now assign the central residue to a con-
formation D corresponding to the highest proba-
bility, or equivalently, the lowest M.

As the M value is based on the Bayesian
probability, it provides a strict statistical measure

for the reliability of predictions. Such a criterion is
missing in most other methods.

The partitioning of the Ramachandran map

The partitioning of the Ramachandran map or
the two-dimensional backbone dihedral angle
space has been based on the distribution of
backbone dihedral angles in native protein struc-
tures. The distribution was computed using 1296
bins covering the entire map, each bin of size 10�
by 10�. We then partitioned the map at two levels
of resolution. At the lower level, the bins were
clustered into 4 regions as shown in Figure 1.
Regions I, II and III correspond to b sheet, a
helix and left-handed helix conformations,
respectively, and Region IV corresponds to
backbone conformations rarely observed in pro-
teins. At the higher resolution level, the larger
Regions I and II were further divided into two
subregions: Region I into Region Ia and Region
Ib representing the extended sheet and the
polyproline helix conformations, respectively, and
Region II into Region IIa and Region IIb corre-
sponding to one type of turn and the a-helix
conformations, respectively.

We note that the subpartitioning corresponds
to the clustered distributions of backbone dihedral
angles of all residues in native protein structures,
not limited to residues contained in certain sec-
ondary structure elements. Although residues in
b-sheets are more likely to be clustered (but not
exclusively) in Regions Ia and Ib and residues in a-
helices more likely to cluster in Region IIb, coil
residues form densely populated clusters centered
in these four sub-regions as well.

Parameter estimation

The parameters in Equations 4 and 5 are all
derived statistically and separately from specific
datasets. In order to obtain P(D|S), a dataset of
tripeptide segments was constructed as follows.
High resolution (<2.0 Å) protein crystal struc-
tures in Protein Data Bank (PDB) (Berman et al.,
2000) were filtered and clustered by CD-HIT
(Li et al., 2001, 2002) based on their sequences.
The sequence identity threshold used in CD-HIT
was at 0.7. Then P(D|S) was calculated as the ratio
between the number of occurrences of segments
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with sequence S and a central residue conforma-
tion in region D and the total number of occur-
rences of segments with sequence S in the dataset.
We note that in each CD-HIT cluster all segments
with the same sequence and falling within the same
bin on the Ramachandran map were counted as
one occurrence. This avoided over counting of
repeatedly occurring segments in conserved do-
mains of different proteins or in repeated domains
of the same protein.

The parameters hri and B have been obtained
separately using three different datasets. One of
the dataset has been derived from BioMagRes-
Bank (BMRB, Seavey et al., 1991) and PDB
(Berman et al., 2000). We filtered proteins con-
tained in BMRB using the following criteria: (1) all
five types of backbone chemical shifts have been
assigned; (2) the resolution of the corresponding
X-ray structure is below 2.5 Å; (3) the chain con-
tains more than 80 residues; (4) the reference
compound was DSS; and (5) the temperature and
pH ranges of NMR experiments were 293–313 K
and 4.5–8.5, respectively. Criteria 4 and 5 are to
ensure that experimental conditions do not have
significant effects on the observed chemical shift
variations. After filtering 34 proteins remained.
The BMRB ID numbers of these proteins as well
as the corresponding PDB IDs are listed in
Table 1. We then extracted tripeptide segments
from these proteins. Any tripeptide segment

meeting one of the following criteria has been
excluded: (1) its amino acid sequences in the PDB
file and in the BMRB file are not the same; (2)
there are missing or multiple sets of coordinates
for atoms in the tripeptide segments; (3) the

Figure 1. Partitioning of the Ramachandran map. Region I
consists of Regions Ia and Ib, and Region II consists of Region
IIa and IIb.

Table 1. Proteins contained in the dataset derived from

BioMagResBank (BMRB)

Protein name BMRB

ID

Protein

Data

Bank

(PDB)

ID

Na
seg

Peptidyl–prolyl cis–trans

isomerase

bmr5305 1PIN 126

Cyay protein bmr5792 1EW4 80

Endonuclease V bmr5244 2END 120

Barnase bmr4964 1A2P 88

ArcB bmr4857 2A0B 105

Tetrahymena GCN5 bmr4321 1QST 120

Heme-binding protein A bmr5081 1DK0 155

Ribosomal protein L25 bmr4395 1DFU 80

Frataxin bmr4342 1EKG 110

Cellular retinoic-acid-binding

protein type II

bmr4186 1CBS 83

Adapter-related protein bmr5761 1GYU 109

Endo-1,4-b-xylanase bmr5679 1XYF 109

3C proteinase bmr4836 1QA7 168

Ribonuclease A bmr4031 7RSA 116

VP4 bmr5275 1KQR 133

Cytochrome B5 bmr4803 1CYO 80

Flavodoxin bmr5540 5FX2 116

Tetranectin bmr6008 1TN3 95

Matrix metalloprotease-13 bmr4679 830C 125

Psd Zip45 (homer 1c/vesl 1l) bmr4766 1I2H 107

Class B b lactamase bmr4102 2BMI 187

Diphtheria toxin repressor bmr4183 1BI1 81

Bet v 1 bmr4417 1BV1 141

Interferon regulatory factor 2 bmr4161 2IRF 88

DNA polymerase b bmr4326 1BPY 71

Bleomycin resistance protein bmr4786 1BYL 119

c d-resolvase bmr4269 2RSL 82

Replication protein A bmr5823 1JMC 175

Major urinary protein bmr4340 1MUP 106

Nitrogen regulatory

IIA protein

bmr5789 1A6J 117

Ribonuclease H bmr5931 1HRH 96

Ba3-type cytochrome C oxidase bmr5819 2CUA 105

Cytosolic phospholipase A2 bmr4188 1CJY 99

Bovine adrenodoxin bmr4566 1CJE 83

aNumber of tripeptide segments considered.
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B-factor of any backbone atom exceeds 1.5 times
the average backbone B-factors of the corre-
sponding protein; (4) less than 3 backbone chem-
ical shifts have been assigned; and (5) the absolute
secondary chemical shift of any backbone atom
exceeds 4.5 times the corresponding standard
deviation. This resulted in 3775 tripeptide seg-
ments from which hri and B have been derived.

We also constructed a dataset based on the
RefDB database (Zhang et al., 2003) using similar
criteria, except that the restrictions on experi-
mental conditions including reference compound,
temperatures and pH have been removed. The
resulting dataset contains 59 proteins and 6243
tripeptide segments. In cases there are several sets
of chemical shift assignments in the RefDB
database corresponding to the same set of protein
coordinates in the PDB database, one set of
chemical shift assignments have been carefully
selected.

To compare with TALOS, we also derived the
parameters using the dataset used in the original
TALOS paper.

Receiver operating characteristic curves

When making a dichotomic prediction based on a
continuous value, one needs to choose an appro-
priate threshold value. After comparisons with the
experimental results, predictions can be classified
into four groups: true positive, false positive, true
negative and false negative. Shifting the threshold
changes the sensitivity (the number of true positive
predictions over the number of actual positives
cases) and specificity (the number of false
positive predictions over the number of actual
negatives cases) of the predictions in opposite
directions. The receiver operating characteristic
(ROC) curve can be used to represent the tradeoff
between sensitivity and specificity. Conventionally
the x-axis of the ROC curve corresponds to one
minus the specificity and the y-axis the sensitivity,
and the area under the ROC curve measures the
discriminative ability of the variable employed to
make the predictions. Usually, an area of 0.8 or
larger indicates a well-chosen variable, while an
area of 0.5 suggests that the prediction is hardly
better than random predictions. More details of
this analysis technique can be found in the litera-
ture (Metz, 1978).

Results and discussions

Statistics of secondary chemical shifts

For the 34 proteins in the BMRB-derived dataset,
the distributions of various secondary chemical
shifts of residues in each of the four regions on the
Ramachandran map (see Figure 1) are shown in
Figure 2. The distributions of 13Ca or 13Cb sec-
ondary chemical shifts vary greatly with backbone
dihedral angles, whereas the distributions of 15N
secondary chemical shifts of residues in different
Ramachandran regions do not have very apparent
differences. Larger differences between the distri-
butions of chemical shifts of residues in different
regions indicate that these chemical shifts contain
more specific information about the backbone
conformation of the central residue.

To quantify the discriminative capability of
secondary chemical shifts of different atom types,

Figure 2. Distributions of secondary chemical shifts of (a) 13Ca

(b) 13Cb (c) 13C¢ (d) 15N (e) 1Ha for residues with backbone
conformations in Regions I, II and III, respectively. Residues
contained in the BioMagResBank (BMRB)-derived dataset
have been considered.
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the following test was performed using the
BMRB-derived dataset. For each pair of Rama-
chandran regions excluding Region IV, each of
the tripeptide segments belonging to either of the
pair of regions was assigned to one of the two
regions based on the secondary chemical shift of
only a single atom of the central residue (that is,
tripeptide segments with secondary chemical shifts
above a varying cutoff were assigned into one
region, others were assigned into the other
region). The areas under the corresponding ROC
curves, which represent the discriminative ability
of individual single-residue-single-atom chemical
shifts, were calculated and listed in Table 2. The
results indicate that the 13Ca, 13Cb and 1Ha

secondary chemical shifts are able to discriminate
well the tripeptide segments in Region I from
those in Region II or Region III, but any indi-
vidual chemical shift cannot discriminate between
the tripeptide segments in Regions II and III.
Using only 1Ha secondary chemical shifts, the
area under the ROC curve for discriminating
between tripeptide segments in Regions II and III
is only slightly larger than 0.5, as the averaged
1Ha secondary chemical shifts in the two regions
are very close. The weak discriminative ability of
15N secondary chemical shifts corresponds well
with that they show similar distributions for dif-
ferent Ramachandran regions. In the following,
we retained chemical shifts of backbone atoms
whose discriminative abilities are not strong, as

using these data can still slightly increase the
accuracy of the assignments.

The accuracy and reliability of lower resolution
assignments

In this study, the backbone conformation of a
central residue of a tripeptide segment was
assigned into the backbone dihedral angle region
with the lowest value of M (Equation 5).

To test the accuracy of our method, we per-
formed a leave-one-out test on the BMRB-derived
dataset, that is, we assigned the backbone dihedral
angles of one protein in this dataset using the
parameters statistically obtained from the dataset
excluding this protein. The accuracy of assign-
ments for each backbone dihedral angle region,
which is defined as the ratio of the number of
correctly assigned segments over the total number
of tripeptide segments, is summarized in Table 3.
For the most populated Regions I and II, our
assignments gave an accuracy of 89% and 87%,
respectively. The accuracy for Region III is only
47%. This may have been caused by the lack of
data in the statistics, as there are only 146 tripep-
tide segments with their central residue confor-
mations belonging to Region III. Region IV
corresponds to the backbone dihedral angles
which rarely occur, so the accuracy for this region
is the lowest, as expected. We also considered a
model in which Region IV is strictly disallowed in
the prediction results and recalculated the accuracy
of our predictions. Then the accuracy for Region

Table 2. Areas under the receiver operating characteristic

(ROC) curves for predictions using single-atom secondary

chemical shifts to discriminate between two Ramachandran

regions

Atom typea Areab

Region I vs.

Region II

Region I vs.

Region III

Region II vs.

Region III

13Ca 0.889 0.835 0.733
13Cb 0.808 0.913 0.760
13C¢ 0.789 0.603 0.719
15N 0.678 0.616 0.551
1Ha 0.856 0.825 0.504

aThe atom whose secondary chemical shift was used for pre-
diction.
bThe predictions were performed for residues whose actual
backbone dihedral angles fall into one of the twoRamachandran
regions considered in each column. See text for details.

Table 3. The accuracy of the predictions for residues in

different Ramachandran regionsa

Number of

tripeptide

segments

in dataset

Number of

correctly

predicted

segmentsb

Number of

correctly

predicted

segmentsc

Region I 1874 1660 (89%) 1690 (90%)

Region II 1562 1356 (88%) 1375 (88%)

Region III 146 69 (47%) 82 (56%)

Region IV 193 72 (37%) –

aPredictions were attempted for all residues in the BMRB-
derived dataset, disregarding the reliability measure.
bPredicted with Region IV allowed in the results. Numbers in
parentheses are portions of correctly predicted segments.
cThe same as the previous column, except that Region IV is
strictly disallowed in the predictions.
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III increased by 9%, and those for Region I and II
also increased slightly.

The above levels of accuracy correspond to
including all predictions without rejecting predic-
tions which can be considered as unreliable based
on the computed probabilities. Naturally, DM, the
difference between the two lowest values of M,
could be considered as a measure of the reliability
of an assignment. In order to check this assump-
tion, we can define a (varying) cutoff value for
DM, and only consider assignments with DM
less than the cutoff as reliable. The ROC curve
associated with varying the cutoff value is shown
in Figure 3a, in which the sensitivity (defined
as the ratio of the number of true positive
assignments over the total number of actual posi-
tive cases) has been plotted versus one minus
the specificity (defined as the ratio of the number
of true negative assignments over the total
number of actual negative cases) at different cutoff
values.

As the cutoff for DM increases, the sensitivity
increases, accompanied by decreases in specificity.
This verifies that DM provides a quantitative
measure for reliability of predictions. In addition,
the area under the above ROC curve is 0.83,
indicating again that DM is suitable to discrimi-
nate reliable assignments from unreliable ones.
Figure 3b shows the curves of the coverage and
accuracy of assignments considered as reliable

versus DM, where the coverage is defined as the
ratio of the number of assignments considered as
reliable over the total number of queries, and the
accuracy as the ratio of the number of correct
reliable assignments over the total number of
assignments considered as reliable. In protein
structure refinement, imposing a wrong restraint
may severely distort the resulting structure. So we
set � ln 100, a relatively strict DM value, as the
cutoff to ensure the accuracy of assignments. This
means that for the accepted assignments, the
probability for the query tripeptide segment to be
in the assigned region is at least 10 times larger
than the probabilities for the same tripeptide seg-
ment to be in other regions. At this cutoff value,
the accuracy and coverage of accepted assignments
are 94% and 69%, respectively, in the leave-one-
out test using the BMRB-derived dataset.

The same leave-one-out test has been per-
formed using the larger RefDB-derived dataset.
The ROC, coverage and accuracy curves are also
plotted in Figure 3. With the same cutoff of
� ln 100 for DM, 4672 assignments (4447 true
assignments and 225 false ones) out of 6243 que-
ries were accepted. The accuracy and coverage of
accepted assignments are 95% and 75%, respec-
tively. The improvement over the test using the
BMRB-derived dataset may be attributed to
higher data quality and more amount of data
employed to estimate the statistical parameters.

Figure 3. (a) Sensitivity and specificity of predictions accepted at different DM values for assignments at the lower resolution level.
From left to right DM increases monotonically, corresponding to lowering the threshold for a prediction to be accepted. (b) Accuracy
(the descent line) and coverage (the ascent line) of accepted assignments versus DM for assignments at the lower resolution level. The
accuracy is the number of correct accepted assignments divided by the total number of accepted assignments. The coverage is the
number of accepted assignments divided by the total number of input targets. Solid lines: results for the BioMagResBank (BMRB)-
derived dataset. Dashed lines: results for the RefDB-derived dataset.
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In Table 4 the results obtained using the three
different datasets are summarized. Results from the
include-all tests (in which the Bayesian probability
parameters have been estimated using each com-
plete dataset, without excluding the protein con-
taining the query tripeptide segment) are compared
with the leave-one-out test results. In principle, to
eliminate query information from the training data,
we only need to remove each query tripeptide seg-
ment instead of each of the entire proteins in the
leave-one-out test. This would however result in too
tedious repetitions of the statistical process. In
addition, even for the smaller datasets, removing a
single query peptide from thousands of training
peptides would have negligible effects compared to
keeping all training data (include-all). So the leave-
one protein-out results instead of the leave-one
tripeptide-out results are reported here. For the
smaller datasets, the leave-one protein-out tests did
lead to slightly degenerated performance compared
to the include-all tests. This mainly reflects poorer
statistics rather than excluding queries from
training data. For the larger RefDB-derived dataset
results from the include-all tests approaches those
from the leave-one-out tests.

The accuracy and reliability of higher resolution
assignments

For the reliable assignments in Regions I and II,
we can further assign the query tripeptide seg-
ments into one of the subregions using the same
Bayesian approach. Using the BMRB-derived
dataset and setting � ln 100 as the cutoff, we

obtained 1352 reliable assignments (1275 true
assignments and 77 false ones) for Region I and
1200 assignments (1138 true ones and 62 false
ones) for Region II in the leave-one-out tests.
Figure 4a, c show the ROC curves for the further
assignments of these tripeptide segments into
subregions of Region I and Region II, respectively.
The areas under the ROC curves are 0.81 and 0.86,
respectively. This indicates that DM can again be
used to discriminate reliable assignments from
unreliable ones. Figure 4b, d show the corre-
sponding coverage and accuracy versus DM curves
for the two regions, respectively. As before, we set
� ln 100 as the cutoff. Then for Region I, our
method produced 902 reliable assignments into Ia
and Ib (838 true assignments and 64 false ones),
and for Region II, 1019 reliable assignments into
IIa and IIb (962 true assignments and 57 false
ones). These results suggest that most tripeptide
segments in these two regions can be further reli-
ably assigned into sub-regions. This is of impor-
tance in practical structure refinements.

The same tests were carried out using the
RefDB-derived dataset. Using a cutoff of � ln 100,
we obtained 2060 reliable assignments (1954 true
assignments and 106 false ones) for Region I and
2511 reliable assignments (2432 true ones and 79
false ones) for Region II in the leave-one-out tests.
The ROC, accuracy and coverage curves for the
further assignments into subregions are shown in
Figure 4. For Region I, further assignments into
Ia and Ib gave 1338 reliable ones (1290 true
assignments and 48 false ones), and for Region II,
further assignments into IIa and IIb gave 2193

Table 4. Summary of the results by the Bayesian-probability-based methods

Dataseta Parameter estimationb Number of segments Goodc Ambc Badc Coveraged Accuracye

TALOS Leave-one-out 2889 1969 806 114 72% 95%

Include-all 2889 2037 765 87 74% 96%

BioMagResBank (BMRB)-derived Leave-one-out 3775 2444 1167 164 69% 94%

Include-all 3775 2539 1098 138 71% 95%

RefDB-derived Leave-one-out 6243 4447 1571 225 75% 95%

Include-all 6243 4501 1540 202 75% 96%

aSee text for definitions of datasets.
bIn ‘‘leave-one-out’’ tests, the protein containing the query tripeptide segment was excluded from the dataset and parameters re-
estimated. In the ‘‘include-all’’ tests, all proteins contained in a given dataset have been used in parameter estimation.
cAmbiguous predictions (Amb) refer to those with DM above � ln 100. Predictions with DM below � ln 100 were marked as either
‘‘Good’’ or ‘‘Bad’’ depending on whether they agree with the actual dihedral angles. Each column lists the corresponding number of
predictions.
dNumber of non-ambiguous predictions divided by the total number of segments in each dataset.
eNumber of good predictions divided by the total number of non-ambiguous predictions.
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reliable ones (2166 true assignment and 27 false
ones). Compared with using the BMRB-derived
dataset, the results are again improved.

Contributions of neighboring residues

Most previous methods assigned backbone dihe-
dral angles based on only the chemical shifts of
atoms of a single residue. Following TALOS, the
Bayesian probability approach presented here
utilizes extra information contained in chemical
shifts of immediately adjacent residues in
sequence. To verify the contributions of adjacent
residues in our assignments, a test using the
BMRB-derived dataset has been performed in
which the backbone dihedral angles were assigned
without using the data of neighboring residues. At
the DM value of � ln 100, the accuracy and cov-
erage of this test assignment are 95% and 57%,
respectively. And in Figure 5, the curve without
considering these chemical shifts is always below
the curves obtained with them taken into account.
Clearly, considering adjacent residues is helpful to
the prediction of backbone dihedral angles.

Comparisons of performance with TALOS

TALOS is the only previous method which uses
information from adjacent residues, so in the
following paragraph, we compare the performance
of our method only with that of TALOS. Before
presenting the results, we emphasize that the
comparisons here are made based on applying both
the Bayesian method and the TALOS method to
the original TALOS dataset. It has been indicated
that with current much larger databases, TALOS
can achieve 71% coverage and >98% accuracy.

We first compare our method with TALOS for
predictions at the lower resolution level. We
applied both the TALOS procedure and the
Bayesian-based approach to the original TALOS
dataset, which contains 21 proteins and 2899
tripeptide segments. We did not include tripeptide
segments with missing backbone chemical shift
data for the first or the last residue in this com-
parison. The following criteria for ‘‘good’’ (true
positive) and ‘‘bad’’ (false positive) predictions
were applied to mark the results: an attempted
prediction is marked as ‘‘good’’ if the actual

Figure 4. (a) Sensitivity and specificity of predictions accepted at different DM values for further assignments of residues in Region I at
the higher resolution level. (b) Accuracy and coverage of accepted assignments versus DM for further assignments of residues in Region
I at the higher resolution level. (c) Similar to (a), but for Region II. (d) Similar to (b), but for Region II. See caption of Figure 3 for
other details.
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backbone dihedral angles are in the predicted
region (with the Bayesian probability approach),
or are in (or just outside) the same region as the
predicted dihedral angle values (with the TALOS
approach), otherwise it is marked as ‘‘bad’’. In
principle, the target dihedral angles and its near-
est neighbors can all be in a less populated region
and still cluster well. This would still be considered
as a good prediction. With the small dataset such
cases did not occur. The accuracy versus coverage
curve using the Bayesian approach is plotted in
Figure 5. The point corresponding to result
obtained using the TALOS method is indicated in
the same figure. This point is slightly below the
Bayesian curve, indicating that both methods have
similar overall performance at this level of pre-
diction resolution. When the accuracy of our
method is equal to that of TALOS, the coverage of
our method is 69% and when the coverage of our
method is equal to that of TALOS, the accuracy of
our method is 97%.

TALOS also gives the predictions of specific
angles by using the averaged backbone dihedral
angles of contributing nearest-neighbor tripeptide
segments. It has been reported that the root mean
square differences between the good predictions by

TALOS and the dihedral angles observed in crys-
tal structures were about 15� for u, and 14� for w
(Cornilescu et al., 1999). If the backbone dihedral
angles of all query tripeptide segments reliably
assigned into Region Ia using the Bayesian method
were predicted as ()122�, 136�), and the backbone
dihedral angels of all query tripeptide segments
reliably assigned into Region I but not reliably
assigned into either Region Ia or Region Ib were
predicted as ()106�, 138�), and so on, the root
mean square differences between the predictions
and the actual values would be 17� for u and 18�
for w. These results would be slightly inferior to
but on the same order of magnitude as that given
by TALOS.

One advantage of the nearest-neighbor-based
TALOS method is that it can capture the corre-
lation between unusual local structures and
sequence and chemical shifts, providing that such
unusual local structures occurred sufficient num-
ber of times in the dataset. Current dataset size
usually does not allow for such unusual local
structures to be characterized by the Bayesian-
based approach

The nearest-neighbor method may, however,
have some undesirable effects. With the original
TALOS dataset, we observed that some of the
ambiguous predictions of different peptide seg-
ments made by the TALOS method are actually
caused by that some tripeptides in the dataset are
repeatedly but wrongly selected as nearest neigh-
bors. For example, Asp50 of b-hydroxydecanoyl
thiol ester dehydrase was identified as the nearest-
neighbor of 16 query segments which have differ-
ent central dihedral angles, resulting in ambiguous
predictions for these queries. On the contrary, the
Bayesian-based method assigned these queries
correctly. General experiences have shown that
enlarging the dataset in the TALOS method will
reduce such effects (the test for the latest version of
TALOS containing 78 proteins shows the coverage
of assignment reaches 71%). It, however, seems
that the problem does not disappear completely as
there are good, unambiguous predictions made
using the smaller dataset turned into ambiguous
ones using the larger dataset.

Program availability

The method reported here was implemented in
Fortran. It reads protein sequences and chemical

Figure 5. Accuracy (the number of correct predictions divided
by the number of accepted predictions) versus coverage (the
number of accepted predictions divided by the total number of
queries) of the predictions. Solid line: predictions made using
the BioMagResBank (BMRB)-derived dataset and using infor-
mation from flanking residues; dashed line: predictions made
using the BMRB-derived dataset without using information
from flanking residues; dotted line: predictions made on the
dataset used by TALOS using the Bayesian probability method;
square: predictions made on the dataset used by TALOS using
the TALOS method.
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shifts from a text file, and its output contains the
assigned backbone dihedral region and the values
ofM and DM for each residue. The program can be
downloaded at http://www.sg.ustc.edu.cn/down-
load, as well as the datasets and statistical results.
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